Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(45): 42797-42802, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38024683

RESUMO

Fuchs' corneal endothelial dystrophy (FECD) is a major cause of vision loss. Corneal transplantation is the only effective curative treatment, but this surgery has limitations. A pharmacological intervention would complement surgery and be beneficial for many patients. FECD is caused by an expanded CUG repeat within intron 2 of the TCF4 RNA. Agents that recognize the expanded repeat can reverse the splicing defects associated with the disease. Successful drug development will require diverse strategies for optimizing the efficacy of anti-CUG oligomers. In this study, we evaluate anti-CUG morpholinos conjugated to cyclic cell penetrating peptides. The morpholino domain of the conjugate is complementary to the repeat, while the peptide has been optimized for import across cell membranes. We show that morpholino conjugates can enter corneal endothelial cells and block the CUG RNA foci associated with the disease. These experiments support morpholino peptide conjugates as an approach for developing anti-CUG therapies for FECD.

2.
Mol Ther Nucleic Acids ; 33: 273-285, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37538053

RESUMO

Biological therapeutic agents are highly targeted and potent but limited in their ability to reach intracellular targets. These limitations often necessitate high therapeutic doses and can be associated with less-than-optimal therapeutic activity. One promising solution for therapeutic agent delivery is use of cell-penetrating peptides. Canonical cell-penetrating peptides, however, are limited by low efficiencies of cellular uptake and endosomal escape, minimal proteolytic stability, and toxicity. To overcome these limitations, we designed a family of proprietary cyclic cell-penetrating peptides that form the core of our endosomal escape vehicle technology capable of delivering therapeutic agent-conjugated cargo intracellularly. We demonstrated the therapeutic potential of this endosomal escape vehicle platform in preclinical models of muscular dystrophy with distinct disease etiology. An endosomal escape vehicle-conjugated, splice-modulating oligonucleotide restored dystrophin protein expression in striated muscles in the mdx mouse, a model for Duchenne muscular dystrophy. Furthermore, another endosomal escape vehicle-conjugated, sterically blocking oligonucleotide led to knockdown of aberrant transcript expression levels in facioscapulohumeral muscular dystrophy patient-derived skeletal muscle cells. These findings suggest a significant therapeutic potential of our endosomal escape vehicle conjugated oligonucleotides for targeted upregulation and downregulation of gene expression in neuromuscular diseases, with possible broader application of this platform for delivery of intracellular biological agents.

3.
RNA Biol ; 19(1): 364-372, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35289725

RESUMO

Friedreich's ataxia (FA) is an inherited neurodegenerative disorder caused by decreased expression of frataxin (FXN) protein. Previous studies have shown that antisense oligonucleotides (ASOs) and single-stranded silencing RNAs can be used to increase expression of frataxin in cultured patient-derived cells. In this study, we investigate the potential for oligonucleotides to increase frataxin expression in a mouse model for FA. After confirming successful in vivo delivery of oligonucleotides using a benchmark gapmer targeting the nuclear noncoding RNA Malat1, we tested anti-FXN oligonucleotides designed to function by various mechanisms. None of these strategies yielded enhanced expression of FXN in the model mice. Our inability to translate activation of FXN expression from cell culture to mice may be due to inadequate potency of our compounds or differences in the molecular mechanisms governing FXN gene repression and activation in FA model mice.


Assuntos
Ataxia de Friedreich , Proteínas de Ligação ao Ferro , Animais , Técnicas de Cultura de Células , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Humanos , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Camundongos , Oligonucleotídeos , RNA , Frataxina
4.
Nucleic Acids Res ; 49(20): 11560-11574, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34718736

RESUMO

Friedreich's ataxia (FRDA) is a severe multisystem disease caused by transcriptional repression induced by expanded GAA repeats located in intron 1 of the Frataxin (FXN) gene encoding frataxin. FRDA results from decreased levels of frataxin; thus, stabilization of the FXN mRNA already present in patient cells represents an attractive and unexplored therapeutic avenue. In this work, we pursued a novel approach based on oligonucleotide-mediated targeting of FXN mRNA ends to extend its half-life and availability as a template for translation. We demonstrated that oligonucleotides designed to bind to FXN 5' or 3' noncoding regions can increase FXN mRNA and protein levels. Simultaneous delivery of oligonucleotides targeting both ends increases efficacy of the treatment. The approach was confirmed in several FRDA fibroblast and induced pluripotent stem cell-derived neuronal progenitor lines. RNA sequencing and single-cell expression analyses confirmed oligonucleotide-mediated FXN mRNA upregulation. Mechanistically, a significant elongation of the FXN mRNA half-life without any changes in chromatin status at the FXN gene was observed upon treatment with end-targeting oligonucleotides, indicating that transcript stabilization is responsible for frataxin upregulation. These results identify a novel approach toward upregulation of steady-state mRNA levels via oligonucleotide-mediated end targeting that may be of significance to any condition resulting from transcription downregulation.


Assuntos
Ataxia de Friedreich/terapia , Terapia Genética/métodos , Proteínas de Ligação ao Ferro/genética , Estabilidade de RNA , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Células Cultivadas , Humanos , Proteínas de Ligação ao Ferro/metabolismo , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , Frataxina
5.
Bioorg Med Chem ; 28(11): 115472, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32279920

RESUMO

Friedreich's Ataxia (FRDA) is an incurable genetic disease caused by an expanded trinucleotide AAG repeat within intronic RNA of the frataxin (FXN) gene. We have previously demonstrated that synthetic antisense oligonucleotides or duplex RNAs that are complementary to the expanded repeat can activate expression of FXN and return levels of FXN protein to near normal. The potency of these compounds, however, was too low to encourage vigorous pre-clinical development. We now report testing of "gapmer" oligonucleotides consisting of a central DNA portion flanked by chemically modified RNA that increases binding affinity. We find that gapmer antisense oligonucleotides are several fold more potent activators of FXN expression relative to previously tested compounds. The potency of FXN activation is similar to a potent benchmark gapmer targeting the nuclear noncoding RNA MALAT-1, suggesting that our approach has potential for developing more effective compounds to regulate FXN expression in vivo.


Assuntos
Descoberta de Drogas , Ataxia de Friedreich/tratamento farmacológico , Proteínas de Ligação ao Ferro/genética , Oligonucleotídeos Antissenso/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Humanos , Proteínas de Ligação ao Ferro/metabolismo , Estrutura Molecular , Oligonucleotídeos Antissenso/química , Relação Estrutura-Atividade , Frataxina
6.
RNA ; 25(9): 1118-1129, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31151992

RESUMO

Oligonucleotide drugs are experiencing greater success in the clinic, encouraging the initiation of new projects. Resources are insufficient to develop every potentially important project, and persuasive experimental data using cell lines close to disease target tissue is needed to prioritize candidates. Friedreich's ataxia (FRDA) is a devastating and currently incurable disease caused by insufficient expression of the enzyme frataxin (FXN). We have previously shown that synthetic nucleic acids can activate FXN expression in human patient-derived fibroblast cells. We chose to further test these compounds in induced pluripotent stem cell-derived neuronal progenitor cells (iPSC-NPCs). Here we describe methods to deliver oligonucleotides and duplex RNAs into iPSC-NPCs using electroporation. Activation of FXN expression is potent, easily reproducible, and potencies parallel those determined using patient-derived fibroblast cells. A duplex RNA and several antisense oligonucleotides (ASOs) with different combinations of 2'-methoxyethyl (2'-MOE), 2'-fluoro (2'-F), and constrained ethyl (cEt) were active, providing multiple starting points for further development and highlighting improved potency as an important goal for preclinical development. Our data support the conclusion that ASO-mediated activation of FXN is a feasible approach for treating FRDA and that electroporation is a robust method for introducing ASOs to modulate gene expressions in neuronal cells.


Assuntos
Proteínas de Ligação ao Ferro/metabolismo , Neurônios/metabolismo , Oligonucleotídeos Antissenso/metabolismo , Oligonucleotídeos/metabolismo , RNA/metabolismo , Linhagem Celular , Eletroporação/métodos , Fibroblastos/metabolismo , Ataxia de Friedreich/metabolismo , Expressão Gênica/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Frataxina
7.
Chem Res Toxicol ; 32(3): 348-361, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30817135

RESUMO

Enzymatic one-electron reduction of heterocyclic N-oxides can lead to the intracellular generation of reactive oxygen species via several different chemical pathways. These reactions may be relevant to hypoxia-selective anticancer drugs, antimicrobial agents, and unwanted toxicity of heterocylic nitrogen compounds.


Assuntos
Óxidos N-Cíclicos/metabolismo , Oxigênio/metabolismo , Pró-Fármacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Aerobiose , Anaerobiose , Óxidos N-Cíclicos/química , Hipóxia , Oxigênio/química , Pró-Fármacos/química
8.
Nucleic Acid Ther ; 29(2): 73-81, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30676271

RESUMO

Fuchs' endothelial corneal dystrophy (FECD) leads to vision loss and is one of the most common inherited eye diseases. Corneal transplants are the only curative treatment available, and there is a major unmet need for treatments that are less invasive and independent of donor tissue. Most cases of FECD are associated with an expanded CUG repeat within the intronic region of TCF4 and the mutant RNA has been implicated as the cause of the disease. We previously presented preliminary data suggesting that single-stranded antisense oligonucleotides (ASOs) can inhibit CUG RNA foci in patient-derived cells and tissue. We now show that duplex RNAs and single-stranded silencing RNAs (ss-siRNAs) reduce the number of cells with foci and the number of foci per cells. Potencies are similar to those that are achieved with chemically modified ASOs designed to block foci. These data widen the potential for synthetic nucleic acids to be used to treat a widely prevalent and debilitating disease.


Assuntos
Distrofia Endotelial de Fuchs/genética , Oligonucleotídeos Antissenso/farmacologia , RNA Interferente Pequeno/farmacologia , Linhagem Celular , Distrofia Endotelial de Fuchs/patologia , Distrofia Endotelial de Fuchs/terapia , Inativação Gênica/efeitos dos fármacos , Predisposição Genética para Doença , Humanos , Íntrons/efeitos dos fármacos , Oligonucleotídeos Antissenso/genética , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/farmacologia , RNA Interferente Pequeno/genética , Fator de Transcrição 4/antagonistas & inibidores , Fator de Transcrição 4/genética , Expansão das Repetições de Trinucleotídeos/efeitos dos fármacos , Expansão das Repetições de Trinucleotídeos/genética
9.
Bioorg Med Chem Lett ; 28(17): 2850-2855, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30076049

RESUMO

Friedreich's ataxia (FRDA) is an incurable neurodegenerative disorder caused by reduced expression of the mitochondrial protein frataxin (FXN). The genetic cause of the disease is an expanded GAA repeat within the FXN gene. Agents that increase expression of FXN protein are a potential approach to therapy. We previously described anti-trinucleotide GAA duplex RNAs (dsRNAs) and antisense oligonucleotides (ASOs) that activate FXN protein expression in multiple patient derived cell lines. Here we test two distinct series of compounds for their ability to increase FXN expression. ASOs with butane linkers showed low potency, which is consistent with the low Tm values and suggesting that flexible conformation impairs activity. By contrast, single-stranded siRNAs (ss-siRNAs) that combine the strengths of dsRNA and ASO approaches had nanomolar potencies. ss-siRNAs provide an additional option for developing nucleic acid therapeutics to treat FRDA.


Assuntos
Ataxia de Friedreich/tratamento farmacológico , Proteínas de Ligação ao Ferro/genética , RNA Interferente Pequeno/farmacologia , Expansão das Repetições de Trinucleotídeos/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Ataxia de Friedreich/genética , Humanos , Proteínas de Ligação ao Ferro/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade , Expansão das Repetições de Trinucleotídeos/genética , Frataxina
10.
J Org Chem ; 83(6): 3126-3131, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29461834

RESUMO

Hypoxia-selective cytotoxins (HSCs) seek to exploit the oxygen-poor nature of tumor tissue for therapeutic gain. Typically, HSCs require activation by one-electron bioreductive enzymes such as NADPH:cytochrome P450 reductase (CYPOR). Thus, successful clinical deployment of HSCs may be facilitated by the development and implementation of diagnostic probes that detect the presence of relevant bioreductive enzymes in tumor tissue. The work described here develops analogues of the well-studied HSC tirapazamine (3-amino-1,2,4-benzotriazine 1,4-di- N-oxide, TPZ) as profluorescent substrates of the one-electron reductases involved in bioactivation of HSCs. Hypoxic metabolism of TPZ or 7-fluoro-TPZ by one-electron reductases releases inherently fluorescent mono- N-oxide metabolites that may serve as indicators, probes, markers, or stains for the detection of the enzymes involved in the bioactivation of HSCs. In particular, profluorescent compounds of this type can provide a foundation for fluorescence-based bioassays that help identify tumors responsive to HSCs.


Assuntos
Corantes Fluorescentes/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Pró-Fármacos/metabolismo , Triazinas/metabolismo , Triazinas/farmacologia , Hipóxia Tumoral/efeitos dos fármacos , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Oxirredução , Tirapazamina
11.
Nucleic Acid Ther ; 28(1): 23-33, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29341839

RESUMO

Friedreich's Ataxia (FA) is an inherited neurologic disorder caused by an expanded GAA repeat within intron 1 of the frataxin (FXN) gene that reduces expression of FXN protein. Agents that increase expression of FXN have the potential to alleviate the disease. We previously reported that duplex RNAs (dsRNAs) and antisense oligonucleotides (ASOs) complementary to the GAA repeat could enhance expression of FXN protein. We now explore the potential of a diverse group of chemically modified dsRNAs and ASOs to define the breadth of repeat-targeted synthetic nucleic acids as a platform for therapeutic development for FA. ASOs and dsRNAs can activate FXN protein expression in FA patient-derived cell lines that possess varied numbers of GAA repeats. Increased FXN protein expression was achieved by ASOs incorporating diverse chemical modifications with low nanomolar potencies, suggesting substantial flexibility in choosing compounds for further chemical optimization and animal studies. Our data encourage further development of ASOs as agents to treat FA.


Assuntos
Proteínas de Ligação ao Ferro/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos/genética , RNA de Cadeia Dupla/genética , RNA Mensageiro/genética , Expansão das Repetições de Trinucleotídeos , Adolescente , Adulto , Linhagem Celular , Criança , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/patologia , Ataxia de Friedreich/terapia , Regulação da Expressão Gênica , Terapia Genética/métodos , Humanos , Íntrons , Proteínas de Ligação ao Ferro/agonistas , Proteínas de Ligação ao Ferro/metabolismo , Masculino , Oligonucleotídeos/metabolismo , Oligonucleotídeos Antissenso/metabolismo , Cultura Primária de Células , RNA de Cadeia Dupla/metabolismo , RNA Mensageiro/agonistas , RNA Mensageiro/metabolismo , Triazóis/química , Frataxina
12.
Nucleic Acids Res ; 46(4): 1584-1600, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29240946

RESUMO

RNA plays a central role in the expression of all genes. Because any sequence within RNA can be recognized by complementary base pairing, synthetic oligonucleotides and oligonucleotide mimics offer a general strategy for controlling processes that affect disease. The two primary antisense approaches for regulating expression through recognition of cellular RNAs are single-stranded antisense oligonucleotides and duplex RNAs. This review will discuss the chemical modifications and molecular mechanisms that make synthetic nucleic acid drugs possible. Lessons learned from recent clinical trials will be summarized. Ongoing clinical trials are likely to decisively test the adequacy of our current generation of antisense nucleic acid technologies and highlight areas where more basic research is needed.


Assuntos
Oligonucleotídeos Antissenso/química , RNA de Cadeia Dupla/química , Processamento Alternativo , Ensaios Clínicos como Assunto , Humanos , MicroRNAs/antagonistas & inibidores , Oligonucleotídeos Antissenso/uso terapêutico , Biossíntese de Proteínas , Proteínas/antagonistas & inibidores , Interferência de RNA , RNA de Cadeia Dupla/uso terapêutico
13.
Chem Res Toxicol ; 28(2): 175-81, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25590513

RESUMO

1-Hydroxyphenazine (1-HP) is a virulence factor produced by Pseudomonas aeruginosa. In this study,supercoiled plasmid DNA was employed as an analytical tool for the detection of ROS generation mediated by 1-HP. These assays provided evidence that 1-HP, in conjunction with NADPH alone or NADPH and the enzyme NADPH:cytochrome P450 reductase, mediated the production of superoxide radical under physiological conditions. Experiments with murine macrophage RAW264.7 cells and profluorescent ROS probes dichlorodihydrofluorescein or dihydroethidine provided preliminary evidence that 1-HP mediates the generation of intracellular oxidants. Generation of reactive oxygen species may contribute to the virulence properties of 1-HP in P. aeruginosa infections.


Assuntos
Fenazinas/química , Fenazinas/metabolismo , Pseudomonas aeruginosa/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Virulência/metabolismo , Animais , Células Cultivadas , Camundongos , Estrutura Molecular , NADP/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Pseudomonas aeruginosa/química , Espécies Reativas de Oxigênio/química , Fatores de Virulência/química
14.
Chem Res Toxicol ; 27(1): 111-8, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24328261

RESUMO

The 1,2,4-benzotriazine 1,4-dioxides are an important class of potential anticancer drugs that selectively kill the low-oxygen (hypoxic) cells found in solid tumors. These compounds undergo intracellular one-electron enzymatic reduction to yield an oxygen-sensitive drug radical intermediate that partitions forward, under hypoxic conditions, to generate a highly reactive secondary radical that causes cell killing DNA damage. Here, we characterized bioreductively activated, hypoxia-selective DNA-strand cleavage by 1,2,4-benzotriazine 1,4-dioxide. We found that one-electron enzymatic activation of 1,2,4-benzotriazine 1,4-dioxide under hypoxic conditions in the presence of the deuterium atom donor methanol-d4 produced nondeuterated mono-N-oxide metabolites. This and the results of other isotopic labeling studies provided evidence against the generation of atom-abstracting drug radical intermediates and are consistent with a DNA-damage mechanism involving the release of hydroxyl radical from enzymatically activated 1,2,4-benzotriazine 1,4-dioxides.


Assuntos
Antineoplásicos/farmacologia , Óxidos N-Cíclicos/farmacologia , Clivagem do DNA/efeitos dos fármacos , Hipóxia/metabolismo , Triazinas/farmacologia , Antineoplásicos/química , Óxidos N-Cíclicos/química , Marcação por Isótopo , Estrutura Molecular , Triazinas/química
15.
Chem Res Toxicol ; 25(8): 1609-15, 2012 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-22621314

RESUMO

Hydrogen sulfide (H(2)S) has long been known for its toxic properties; however, in recent years, evidence has emerged that this small, gaseous molecule may serve as an endogenous cell-signaling agent. Though perhaps surprising in light of its potential role as an endogenous signaling agent, a number of studies have provided evidence that H(2)S is a DNA-damaging mutagen. In the work reported here, the chemical mechanisms of DNA damage by H(2)S were examined. Using a plasmid-based DNA strand cleavage assay, we found that micromolar concentrations of H(2)S generated single-strand DNA cleavage. Mechanistic studies indicate that this process involved autoxidation of H(2)S to generate superoxide, hydrogen peroxide, and, ultimately, the well-known DNA-damaging agent hydroxyl radical via a trace metal-mediated Fenton-type reaction. Strand cleavage by H(2)S proceeded in the presence of physiological thiol concentrations, and the known byproducts of H(2)S oxidation such as thiosulfate, sulfite, and sulfate do not contribute to the strand cleavage process. However, initially generated oxidation products such as persulfide (S(2)(2-)) likely undergo rapid autoxidation reactions that contribute to the generation of superoxide. The potential relevance of autoxidation processes to the genotoxic and cell signaling properties of H(2)S is discussed.


Assuntos
Dano ao DNA/efeitos dos fármacos , DNA/química , Sulfeto de Hidrogênio/toxicidade , Espécies Reativas de Oxigênio/química , Transdução de Sinais/efeitos dos fármacos , DNA/metabolismo , Compostos Ferrosos/química , Sulfeto de Hidrogênio/química , Radical Hidroxila/química , Oxirredução , Plasmídeos/química , Plasmídeos/metabolismo , Compostos de Sulfidrila/química , Superóxidos/química
16.
J Mol Model ; 18(1): 203-12, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21523537

RESUMO

1α,25(OH)(2)D(3), which is directly mediated by the vitamin D receptor (VDR), exerts a wide variety of biological actions. However, the treatment with 1α,25(OH)(2)D(3) is limited because of its side effects. Many analogs and several nonsteroidal mimics with potent biological activity have been reported so far, and our rationale for designing the VDR agonists was on the basis of computer-aided drug design method by de novo design of A-ring and C/D-ring position of 1α,25(OH)(2)D(3). Pyrimidine-2,4-diamine was selected as A-ring, and naphthalene and benzene were chosen as C/D-ring. By linking different components, a virtue compound library was obtained. To evaluate the contribution to activity of each component, we performed a series of automated molecular docking operations. Results revealed that the 19-dimethyl derivatives (the C-19 position correspond to C-20 in 1α,25(OH)(2)D(3)) show the favorable docking affinity to VDR. Moreover, the docking results are quite robust when further validated by molecular dynamics simulations. In addition, by free energy analysis using molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method, the driving force of the binding between VDR and the ligands is proved to be hydrophobic interactions. Thus, a possible strategy to design new series of VDR agonists is proposed. The strategy can be successfully applied to explain the high potential activities of the 19-dimethyl derivatives. It is anticipated that the findings reported here may provide useful information for designing effective VDR agonists as well as the therapeutic treatment of VDR-related diseases.


Assuntos
Simulação de Dinâmica Molecular , Receptores de Calcitriol/agonistas , Receptores de Calcitriol/química , Vitamina D/análogos & derivados , Vitamina D/química , Sítios de Ligação , Simulação por Computador , Desenho de Fármacos , Ligantes , Modelos Moleculares , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...